(一)TLR4分子表达下调
将小鼠腹腔巨噬细胞用内毒素预先处理后,再次用内毒素攻击,则此时细胞因子的分泌显著减少,表现出时间和剂量依赖性的特点。在耐受的巨噬细胞中证实,依赖于TLR4-MyD88信号途径的近侧信号转导分子受到影响。用小剂量内毒素刺激巨噬细胞后数小时内,TLR4 mRNA表达显著下调,24h后才恢复正常水平,而膜表面上TLR4分子在1h开始表现出渐进式下降,其抑制性状态持续超过24h。此时的细胞因子分泌下降与TLR4表达下调有关,也是内毒素耐受的发生机制之一。在内毒素耐受中,TLR4的基本调控因子PU.1和干扰素基因序列结合蛋白(interferon consensus sequence binding protein,ICSBP)是如何相互作用影响Tlr4基因转录的目前还不清楚。
(二)IRAK分子改变
IRAK为IL-1受体的信号转导分子,现证实其也参与TLR家族的信号转导。过量表达IRAK的显性失活形式能抑制LPS的信号转导,而且在lRAK基因缺陷的293细胞中转染野生型IRAK能使细胞对LPS发生反应。Li等对THP-1细胞进行内毒素攻击时,发现内源性IRAK能够被快速激活,初次内毒素刺激时,LPS可促使IRAK与MyD88迅速结合;在内毒素耐受的THP-1细胞中发现,IRAK表达数量显著下降,只有正常水平的20%,在再次内毒素攻击时,无法诱导出IRAK的酶学活性;同时,IRAK与MyD88发生分离不能结合,无法转导LPS的跨膜信号。可见,IRAK从量和质的两个方面下调内毒素的激活效应。
(三)NF-κB复合物分子组成的改变
内毒素耐受细胞若再次受到内毒素刺激,则不能有效激活NF-κB。未激活的巨噬细胞、NF-κB组成异源二聚体(p50和p65)形式,并与抑制性IκB结合,滞留在胞质内。当细胞初次受到内毒素刺激后,IκB迅速被IκB激酶(IKK)磷酸化,并经泛蛋白-蛋白质酶体的途径降解。在内毒素耐受细胞中,NF-κB复合物主要为p50/p50,后者缺乏反式转录活性,并能抑制基因表达。p50的前体蛋白为p105,经过酶切生成。在内毒素耐受细胞中,由于p105合成显著增加,p50与p50形成二聚体,而p65 mRNA无改变,故不能诱导p65蛋白表达增加,所以p50/p50占优势,p65/ p50比例下降,并抑制相关基因表达。
(四)IκB激酶的改变
内毒素耐受的细胞中IKK不能被激活,结果IκB无法降解,持续与NF-κB结合,而NF-κB复合物不能从胞质转位进入胞核内使其调控基因表达。可见,IκB激酶也参与了内毒素耐受的发生。
(五)蛋白激酶C的改变
内毒素可以激活不同的致分裂原活化蛋白激酶(rmitogen-activated protein kinase,MAPK)的级联反应,包括细胞外信号调节蛋白激酶、JNK(c-Jun N-terminal kinase),p38MAPK/反应激酶途径(p38 MAPK/reactivating kinase pathway)。MAPK可以使下游分子的丝氨酸/苏氨酸发生磷酸化。有活性的细胞外信号调节蛋白激酶使下游分子磷酸化并调节其活性,其中包括其他蛋白激酶、细胞骨架、磷脂酶A2和核转录因子(如Elk1/TCF及c-Jun),调节即刻早期基因的表达。内毒素可激活PI-3K,后者分解膜上的脂质后产生DAG和IP3,IPs进一步激活PKC,并发生多种效应。在内毒素耐受细胞中,使用PKC的激活剂如佛波酯,能恢复细胞因子的合成和分泌,可见PKC也参与内毒素耐受效应。
(六)G蛋白与内毒素的耐受
用百日咳毒素使巨噬细胞G蛋白亚单位Gi的近C端Cys残基发生核糖基化,修饰后的Gi对受体介导的信号转导无反应而处于持久失活状态,此时用内毒素进行刺激可显著降低细胞因子的合成和分泌。可见G蛋白也参与了机体对内毒素反应的调节。
总之,在天然内毒素耐受之外,宿主作为一个整体,其中有多种成分共同参与内毒素耐受的发生,而并非某一个成分单独发挥作用,这也表现出了机体反应的协调性。一旦某个成分逃脱抑制的束缚,则会破坏整个耐受的平衡状态,使耐受现象消失,并摆脱原有的耐受状态,继而下传LPS信号转导,对机体产生效应。